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Abstract

United States national parks attract >275 million visitors annually and collectively present risk of 

exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, 

mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed 

the current state of knowledge for risk of exposure to vector-borne pathogens in national parks 

through a review of relevant literature, including internal National Park Service documents and 

organismal databases. We conclude that, because of lack of systematic surveillance for vector-

borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. 

Existing data for vectors within national parks were not based on systematic collections and rarely 

include evaluation for pathogen infection. Extrapolation of human-based surveillance data from 

neighboring communities likely provides inaccurate estimates for national parks because 

landscape differences impact transmission of vector-borne pathogens and human-vector contact 

rates likely differ inside versus outside the parks because of differences in activities or behaviors. 

Vector-based pathogen surveillance holds promise to define when and where within national parks 

the risk of exposure to infected vectors is elevated. A pilot effort, including 5–10 strategic national 

parks, would greatly improve our understanding of the scope and magnitude of vector-borne 

pathogen transmission in these high-use public settings. Such efforts also will support messaging 

to promote personal protection measures and inform park visitors and staff of their responsibility 

for personal protection, which the National Park Service preservation mission dictates as the core 

strategy to reduce exposure to vector-borne pathogens in national parks.
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The 397 National Park Service (NPS) units of the United States (hereafter referred to as 

national parks) attract 275 million visitors annually (http://www.nature.nps.gov/stats/). The 

majority of visits occur during the warm months, when arthropod vectors of human 

pathogens, such as fleas, mosquitoes, and ticks, are most active. Park visitors frequently 

engage in outdoor activities that potentially place them at risk for exposure to these vectors 

and the pathogens they transmit. However, the magnitude of this public health problem in 

the national parks remains unknown. This results from a lack of systematic surveillance in 

national parks for arthropod vectors and the pathogens they carry, combined with a lack of 

detailed travel histories collected during case investigations for notifiable vector-borne 

diseases, with the notable exception of plague, that could implicate a national park as a 

potential or likely source of infection (Eisen and Eisen 2007). Surrounding areas cannot be 

assumed to represent the risk within a national park because 1) landscape differences 

between the relatively undisturbed ecosystems within the parks and fragmented populated 

areas outside the parks may impact enzootic transmission of vector-borne pathogens and 2) 

potential differences in activities or behaviors between park visitors and residents of 

surrounding areas could affect contact rates with vectors.

To reduce risk of human exposure to vector-borne pathogens within the national parks, it is 

essential to first define to what extent vector-borne pathogens occur in the parks, and when 

and where within the parks the risk for exposure to infected vectors is elevated versus low. 

Such knowledge will facilitate improved messaging to visitors and staff regarding their risk 

of exposure to vector-borne pathogens and the need for use of personal protection measures 

and/or activity modification. Should an exceptional situation arise, such as a major outbreak 

of a potentially severe vector-borne disease within a national park, prior knowledge of the 

areas and time periods presenting the highest risk of exposure to the causative agent also 

would help to optimally target potential NPS-approved response activities in space and time, 

thus reducing the potential for human–vector contact while minimizing the impacts on the 

ecosystem of the park. This is in keeping with balancing the NPS preservation mission (to 

protect all resources and leave them unimpaired for the enjoyment of future generations) 

against the need to protect against a significant threat to human safety (National Park 

Service 2006).

Key Vectors and Vector-Borne Pathogens Potentially Occurring in U.S. 

National Parks

At a national scale in the United States, the broad geographic distributions of important 

vector species are well documented (Eskey and Haas 1940, Dennis et al. 1998, Brown et al. 

2005, Darsie and Ward 2005; http://vectormap.org/). However, within these broad 

geographic ranges the risk of encountering vectors, and infected vectors, may vary 

substantially even over short distances. This is especially relevant within ecologically or 

climatically heterogeneous areas, including some of the larger national parks. Because 

national parks are distributed across the United States, they collectively present risk to a 

wide range of vector species, and numerous vector-borne bacterial, protozoan or viral 

pathogens (Table 1). Below, we summarize the most important vectors and vector-borne 

pathogens by region of the United States. However, we caution that local vector and 
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pathogen surveillance is required to determine the abundance of vectors and prevalence of 

vector-borne pathogens within any given national park. As outlined in the next section, such 

data are scarce from U.S. national parks and existing vector databases do not contain 

information to support risk assessments for exposure to vector-borne pathogens in the parks.

For tick vectors and tick-borne diseases, national parks in the eastern United States may 

harbor multiple species of human-biting hard (ixodid) ticks and present risk for exposure to 

a wide range of human pathogens. The blacklegged tick (Ixodes scapularis Say) is abundant 

in the northeastern and north–central United States, and is the principal vector to humans of 

multiple pathogens including the bacterial agents causing Lyme disease (Borrelia 

burgdorferi) and human granulocytic anaplasmosis (Anaplasma phagocytophilum), and a 

protozoan causing babesiosis (Babesia microti) (Sonenshine 1993, Dennis et al. 1998, 

Brown et al. 2005, Piesman and Eisen 2008). It also can transmit the bacterial agent causing 

tularemia (Francisella tularensis) and the Powassan virus (Eisen 2007, Ebel 2010). Two 

other commonly human-biting ticks occur in the eastern United States: the American dog 

tick (Dermacentor variabilis (Say)) and the lone star tick (Amblyomma americanum (L.)). 

The American dog tick is a vector to humans of multiple bacterial agents, including those 

causing Rocky Mountain spotted fever (Rickettsia rickettsii) and tularemia (Sonenshine 

1993, Brown et al. 2005, Eisen 2007). The bite of this tick also may cause tick paralysis 

because of a toxin present in its saliva (McCue et al. 1948, Ransmeier 1949). The lone star 

tick is the primary vector to humans of the causative agent of human monocytic ehrlichiosis 

(Ehrlichia chaffeensis), and also may be involved in the transmission of the agents of Rocky 

Mountain spotted fever, spotted fever rickettsiosis caused by Rickettsia parkeri (together 

with the Gulf Coast tick, Amblyomma maculatum Koch), and tularemia (Sonenshine 1993, 

Childs and Paddock 2003, Brown et al. 2005, Eisen 2007). Human-biting life stages of these 

three tick species are abundant in the late spring and summer (Sonenshine 1993, Eisen 

2007), coinciding with heavy visitation of the eastern parks, and can be encountered through 

contact with emergent vegetation.

National parks in the intermountain west harbor the human-biting Rocky Mountain wood 

tick (Dermacentor andersoni Stiles), which is a vector of the causative agents of Rocky 

Mountain spotted fever and tularemia, and also of the Colorado tick fever virus (Sonenshine 

1993, Brown et al. 2005, James et al. 2006, Eisen 2007). Rocky Mountain wood tick bites 

also may result in tick paralysis (Dworkin et al. 1999, Pape et al. 2006). One notable aspect 

of the biology of the Rocky Mountain wood tick is that the abundance of the human-biting 

adult stage peaks in the spring (James et al. 2006), and is in rapid decline by the summer 

peak in park visitation.

National parks in the far western United States may harbor the western blacklegged tick 

(Ixodes pacificus Cooley & Kohls) and the Pacific Coast tick (Dermacentor occidentalis 

Marx), and the Rocky Mountain wood tick and American dog tick also can be encountered 

in some areas (Dennis et al. 1998, Brown et al. 2005, James et al. 2006). The western 

blacklegged tick is the primary vector to humans in the far west of the causative agents of 

Lyme disease and human granulocytic anaplasmosis, and also may be involved in the 

transmission of a recently described protozoan disease agent (Babesia duncani) (Foley et al. 

2004, Brown et al. 2005, Conrad et al. 2006). Most human infections likely result from 
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exposure to the nymphal stage of this tick. Human-nymph contact is reduced in the west, 

compared with the closely related blacklegged tick in the east, because nymphs of the 

western blacklegged tick are 1) most abundant in the spring with declining numbers during 

the summer peak in park visitation and 2) reluctant to ascend emergent vegetation such as 

grass and brush, which restricts the substrates where humans readily contact nymphs to leaf 

litter and fallen logs (Clover and Lane 1995, Lane et al. 2004). The Pacific Coast tick is a 

potential vector of the agents causing Rocky Mountain spotted fever and Colorado tick 

fever, and also may be involved in the transmission of a recently described rickettsial 

disease agent provisionally named Rickettsia 364D (Brown et al. 2005, Shapiro et al. 2010).

Sleeping in cabins, particularly in the national parks in the west, also may present risk for 

exposure to soft (argasid) ticks and their associated relapsing fever spirochetes (United 

States Centers for Disease Control and Prevention [CDC] 1973, 1991; Boyer et al. 1977; 

World Health Organization [WHO] 1991; Paul et al. 2002). The tick Ornithodoros hermsi 

Wheeler transmits the relapsing fever spirochete Borrelia hermsii in mountainous areas of 

the west, and visits to lower elevation areas in the southwest can result in exposure to 

Ornithodoros turicata (Duges), which transmits Borrelia turicatae (Dworkin et al. 2002, 

Barbour 2005). Notable outbreaks of tick-borne relapsing fever in staff and visitors occurred 

in Grand Canyon National Park in 1973 (>60 confirmed or probable cases) and 1990 (17 

confirmed or probable cases) (Boyer et al. 1977, Paul et al. 2002).

Visits to national parks also may result in exposure to human-biting mosquitoes and their 

associated arboviruses. West Nile virus is now present throughout the contiguous United 

States, and exposure can occur through the bites of different mosquito species (Kramer et al. 

2008). The most prominent mosquito vectors of West Nile virus to humans include: Culex 

pipiens L. (northern United States), Culex nigripalpis Theobald (southeastern United States), 

Culex quinquefasciatus Say (southern United States), Culex salinarius Coquillett (eastern 

United States), and Culex tarsalis Coquillett (western United States and Central Plains). 

Less common mosquito-borne arboviruses with potential for exposure in national parks 

include eastern equine encephalitis virus (primarily in the Atlantic and Gulf Coast states), La 

Crosse encephalitis virus (upper Midwestern and mid-Atlantic and southeastern states), St. 

Louis encephalitis virus (eastern United States and Central Plains), and western equine 

encephalitis virus (western United States and Central Plains) (Moore et al. 1993; http://

www.cdc.gov/ncidod/dvbid/arbor/). Several mosquito species are involved in the 

transmission of these viruses to humans, including Aedes triseriatus (Say) (La Crosse 

encephalitis virus) and different Culex spp. mosquitoes (Saint Louis encephalitis virus and 

western equine encephalitis virus).

In parks located west of the 100th meridian (that bisects the Dakotas, Nebraska, Kansas, 

Oklahoma, and Texas) national park staff and visitors also may encounter the plague 

bacterium, Yersinia pestis. Transmission can occur through direct contact with infected 

animals or via exposure to infected fleas (Barnes 1982). Oropsylla montana (Baker) and 

Eumolpianus eumolpi (Rothschild), ground squirrel- and chipmunk-associated fleas, 

respectively, are arguably the most common bridging vectors to humans (Nelson 1980, 

Eisen et al. 2006, Lowell et al. 2009) but numerous other rodent-associated fleas can serve 

as vectors of plague bacteria (Eisen et al. 2009). Human plague cases with exposure to Y. 
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pestis occurring in a U.S. national park include a visitor to Sequoia National Park in 1984 

(CDC, unpublished data), a NPS biologist in Petrified Forest National Park in 1995 (Levy 

and Gage 1999, CDC unpublished data), and a recent fatal case, after exposure to a plague-

infected mountain lion, in a NPS biologist in Grand Canyon National Park in 2007 (Wong et 

al. 2009).

Objectives

We aimed to assess the current state of knowledge for risk of exposure to vector-borne 

pathogens in national parks and to propose strategies to improve pathogen surveillance and 

reduce human pathogen exposure. It also should be noted that the problem of risk 

assessment for vector-borne diseases, and the potential solutions discussed herein to reduce 

such risks, are not unique to U.S. national parks but can be applied broadly to other public 

lands, particularly those with a similar conservation focus, including national forests, 

wildlife preserves, and state, regional, and local parks worldwide.

Existing Information for Vectors and Vector-Borne Pathogens Within U.S. 

National Parks

Peer-Reviewed Literature

We conducted a literature search, using the Web of Knowledge (v.5.5.), based on the topic 

words flea, mosquito, or tick combined with national battlefield, national historic, national 

historical, national lakeshore, national memorial, national military, national monument, 

national park, national preserve, national recreation, national reserve, national river, national 

seashore, national trail or parkway. This produced 16, 10, and 7 records, respectively, with 

information from U.S. national parks or other types of NPS units and potential relevance to 

tick-borne diseases, mosquito-borne diseases, or flea-borne diseases (i.e., plague in the 

western United States). Six of the 16 tick-related records addressed the Rocky Mountain 

wood tick in Rocky Mountain National Park, including studies on the ecology of Colorado 

tick fever virus during an outbreak of Colorado tick fever among park visitors in the early 

1970s (Carey et al. 1980; Bowen et al. 1981; McLean et al. 1981, 1989, 1993a) and a recent 

study on the tick’s life history (Eisen et al. 2008). Other studies dealt with outbreaks of 

relapsing fever in Grand Canyon National Park (Boyer et al. 1977, Paul et al. 2002), the life 

history of the blacklegged tick in Morristown National Historical Park or along the 

Appalachian Trail (Vail and Smith 1997, 1998; Oliver and Howard 1998), tick-host-

pathogen associations on Cape Hatteras National Seashore and Assateague Island National 

Seashore (Oliver et al. 1999), surveys for ticks and tick-borne pathogens in Yosemite 

National Park (Schwan et al. 1993, Fleer et al. 2011), and surveys for ectoparasites on 

vertebrates in Big South Fork National River and Recreation Area and Great Smoky 

Mountains National Park (Reeves et al. 2007, Parker et al. 2009). Other relevant studies, not 

recovered in the search but known to us, reported on the detection of E. chaffeensis from A. 

americanum ticks collected on Fire Island National Seashore (Mixson et al. 2006) and 

public education and Lyme disease prevention in the Delaware Water Gap National 

Recreation Area (Hakim and Bitto 2005).
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The mosquito records revealed by the search included summaries of mosquitoes encountered 

in Glacier National Park, Grand Teton National Park, Great Smoky Mountains National 

Park, Kings Canyon National Park, Sequoia National Park, Yellowstone National Park, or 

Yosemite National Park (Nielsen and Blackmore 1996; Moore 2001; Reeves et al. 2004; 

Nielsen 2009, 2012; Holmquist et al. 2011). Some of these studies were based on larval 

collections, with no special effort to collect the adult stage of human-biting mosquitoes, and 

none examined collected mosquito specimens for presence of human pathogens. Other 

studies addressed the life history of Culex quinquefasciatus in Hawai’i Volcanoes National 

Park and Haleakala National Park (Aruch et al. 2007, Reiter and Lapointe 2009), use of 

repellents against the black salt marsh mosquito (Aedes taeniorhynchus (Wiedemann)) in 

Everglades National Park (Barnard et al. 2002), and use of different attractants for traps to 

collect mosquitoes in Everglades National Park (Kline et al. 1991). The flea records 

included summaries of fleas encountered on rodents in Big South Fork National River and 

Recreation Area, Grand Teton National Park, Rocky Mountain National Park, or Yosemite 

National Park (Eads and Campos 1983, Watkins et al. 2006, Parker et al. 2009, Fleer et al. 

2011), and studies of flea-rodent-Y. pestis interactions in Lava Beds National Monument and 

Crater Lake National Park (Stark and Kinney 1969, Nelson and Smith 1976, Smith et al. 

2010). Other relevant studies, not recovered in the search, reported on fleas encountered in 

Crater Lake National Park and Mesa Verde National Park (Beck 1966, Gresbrink and 

Hopkins 1982).

Further searches were conducted that combined topic words for pathogens (Anaplasma, 

Babesia, Borrelia, Ehrlichia, Francisella, Rickettsia, Yersinia, or virus) with the different 

types of NPS units. These searches produced six additional articles dealing with detection of 

pathogens in vertebrates, including the isolation of B. burgdorferi from a bird captured in 

the Saint Croix National Scenic Riverway (McLean et al. 1993b), detection of B. microti 

from rodents in Grand Teton National Park (Watkins et al. 1991), serological evidence for 

exposure of cervids captured or shot in national parks in California to B. burgdorferi 

(Yosemite National Park) or A. phagocytophilum (Point Reyes National Seashore) (Aguirre 

et al. 1995, Foley et al. 1998) and serological evidence for exposure of carnivores captured 

in Yellowstone National Park to F. tularensis (coyotes) or Y. pestis (cougars and coyotes) 

(Gese et al. 1997, Biek et al. 2006).

Finally, a recently published study on zoonotic infections among employees at Great Smoky 

Mountains National Park and Rocky Mountain National Park provided serologic evidence of 

previous exposure to various tick- or mosquito-borne pathogens, including A. 

phagocytophilum, Colorado tick fever virus, E. chaffeensis, La Crosse virus and West Nile 

virus, and of infection during a 1-yr prospective study with mosquito-borne La Crosse virus 

in an employee at Great Smoky Mountains National Park (Adjemian et al. 2012). However, 

it is not clear to what extent these exposures occurred within the National Parks versus 

elsewhere.

Technical Reports and Databases

There also is a “gray literature,” that is, internal NPS technical reports and CDC and state 

health department internal records, as well as various databases containing vector collection 

EISEN et al. Page 6

J Med Entomol. Author manuscript; available in PMC 2015 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



records. However, many of these sources are not readily accessible and generally 

unavailable to decision makers who want to know about previous disease outbreaks. An 

examination of NPS technical reports published from 2004 to 2012 produced reports on 

mosquito risk assessment in Everglades National Park and the risk for exposure to mosquito- 

or tick-borne pathogens on Fire Island National Seashore and in national parks in California 

(Ginsberg 2005, Leong 2010, National Park Service and California Department of Public 

Health 2011). NPS species databases focus primarily on vertebrates and contain scant 

information on arthropod vectors or associated human pathogens. External databases, such 

as the Global Biodiversity Information Facility (http://www.gbif.org/), the Walter Reed 

Biosystematics Unit’s Vector-Map (http://vectormap.org/), the Centers for Disease Control 

and Prevention’s ArboNet (http://www.cdc.gov/ncidod/dvbid/westnile/USGS_frame.html), 

or the U.S. Department of Agriculture’s tick geodatabase, could potentially be mined for 

data relating to arthropod vectors in national parks. However, because the information 

contained in these databases represent compilations of vector collections generated without a 

systematic sampling design and may span decades, it is not adequate for the purpose of 

assessing risk of exposure to vector-borne pathogens in national parks.

Assessment of the Quality of the Existing Information

We have noted previously that risk assessments for exposure to vectors or vector-borne 

pathogens, including mapping, or modeling outputs, are only as good as the data on which 

they are based (Eisen and Eisen 2011). Existing data from U.S. national parks are not 

adequate to support high-quality risk assessments for vector-borne pathogens or messaging 

to park staff and visitors regarding their risk of pathogen exposure beyond very general 

statements, such as the following hypothetical example statement: While visiting this park 

you may encounter the tick Dermacentor andersoni, which bites humans and is known to be 

capable of transmitting several human pathogens including those causing Colorado tick 

fever, Rocky Mountain spotted fever, and tularemia. Basic measures for which existing 

information is lacking or inadequate for most national parks include 1) presence by 

individual national park of specific vector species and, most importantly, vector-borne 

pathogens, 2) high risk areas within the parks, and 3) high risk periods of the year. Such 

knowledge simply cannot be generated without a systematic surveillance effort. We 

recognize that systematic surveillance programs to produce such information also are 

lacking for tick- and flea-borne pathogens in the United States outside of the national parks, 

as well as for mosquito-borne pathogens in many populated areas. However, it is important 

to remember that, in populated settings, human-based surveillance provides information on 

areas where risk of exposure to (notifiable) vector-borne pathogens is greatest. National 

parks, and other public lands visited frequently by travelers and nonresidents, therefore 

present a unique problem where the local epidemiology may not accurately reflect the risk 

for vector-borne pathogen transmission in these environments. We also note a lack of long-

term data on vector, pathogen, or disease occurrence from the national parks; disease 

outbreaks can spur intensive short-term activities but longer term studies are lacking. This is 

unfortunate because, due to the relative stability of their ecosystems and land use patterns, 

national parks are exceptionally well suited for studies on how climate change may impact 

the distribution and abundance of mosquito and tick vectors, and the occurrence and 

prevalence of their associated pathogens.
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Toward Improved Surveillance for Vectors and Vector-Borne Pathogens in 

U.S. National Parks

Uniqueness of National Parks Compared With Neighboring Areas

Positive spatial autocorrelation, with high values tending to be geographic neighbors of high 

values (e.g., a county with high Lyme disease incidence neighboring on other counties with 

high Lyme disease incidence) and low values geographic neighbors of low values, is 

commonly observed for risk measures relating to mosquito or tick vectors or vector-borne 

diseases (Eisen and Eisen 2011). This can be exploited for spatial extrapolation of risk 

measures from an examined geographic area to neighboring nonsampled areas. However, 

national parks are problematic with respect to this approach because they almost always 

harbor unique and relatively undisturbed ecosystems. They also may be less fragmented 

compared with neighboring areas, a factor potentially impacting species composition and 

abundance of vertebrate reservoirs/amplification hosts of mosquito- or tick-borne pathogens 

and the intensity of enzootic pathogen transmission (Eisen et al. 2012, Wood and Lafferty 

2013). Thus, the ecology of a vector-borne pathogen may differ substantially when 

comparing a national park to its neighboring areas. This could result in microhabitat patterns 

of risk for exposure to infected vectors that are unique to the park environment and distinct 

from those found just outside the park. To further complicate the issue, human use of the 

park environment (hiking and spending large portions of time outdoors) may result in 

increased risk of vector exposure compared with the use of surrounding areas; thus, even if 

vector-based risk measures are equivalent between a national park and its neighboring lands, 

human behavior may lead to increased risk of pathogen exposure in the park. The situation 

in neighboring areas therefore cannot be assumed to reflect the risk of exposure to vector-

borne pathogens in a national park, regardless of whether the data were based on 

entomologically or epidemiologically derived risk measures.

Vector-Based Surveillance Within National Parks

National parks can readily be surveyed for risk of contact with human-biting ticks and 

mosquitoes, and their associated pathogens (Ginsberg 2005). Standard collection 

methodologies for host-seeking hard ticks (dragging/flagging of vegetation), soft ticks 

(carbon dioxide-baited ground traps), or mosquitoes (battery-operated traps suspended from 

brush or trees) have minimal environmental impacts and are well suited for use in a national 

park. Pathogen detection in collected ticks or mosquitoes can be achieved following 

established polymerase chain reaction (PCR)/RT-PCR protocols. Risk measures can then be 

generated based on vector abundance (e.g., number of ticks encountered per minute of drag 

sampling or number of mosquitoes per trap-night) or pathogen infection (prevalence of 

infection among examined specimens). Ideally, they should be presented as a more 

informative combination measure, such as the number of infected ticks encountered per 

minute of drag sampling or unit of sampled area (referred to as acarological risk index) or 

the number of infected female mosquitoes collected per trap night (sometimes referred to as 

the vector index) (Eisen and Eisen 2008). Spatial modeling can then be used to develop risk 

maps outlining areas with elevated versus low projected risk of exposure to vectors, and 

infected vectors, within a given park based on associations with environmental factors for 
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the specific vector collection locations (Eisen and Eisen 2008, 2011). This also could be 

augmented by convenience sampling: for example, encouraging visitors to submit ticks they 

find attached and feeding or still walking on their skin or clothing to park staff, or testing 

ticks that are found on road-killed animals and/or other wildlife trapped for research or 

management purposes for presence of human pathogens.

To conclude, mosquito- and tick-based surveillance for human pathogens is suitable for 

implementation in national parks and holds promise as the backbone of a nationwide 

surveillance program for mosquito- and tick-borne pathogens in the national park system. 

Flea vectors can be collected through the use of burrow swabs and tested for presence of Y. 

pestis but because of the low infection rates observed in host-seeking fleas even during 

active epizootics, it may be more practical to base plague surveillance efforts on surveys for 

animal die-offs, particularly rodents that can perish in large numbers during plague 

outbreaks, and testing of dead animals, or on serosurveys of carnivores that consume large 

numbers of potentially infected rodents (Gage et al. 1994, Gage 1999).

Human-Based Surveillance in National Parks

Human-based surveillance for exposure to vector-borne pathogens among national park 

visitors, who arrive from across the United States as well as from other countries, is 

challenging. This is because 1) visitors commonly will have left the park by the time 

symptoms occur and 2) public health investigators in the United States do not reliably 

collect detailed travel histories on patients diagnosed with notifiable tick- and mosquito-

borne diseases (in contrast to plague), which makes it difficult to pin-point a national park as 

a potential or likely pathogen exposure location from patient case reports (D. Wong, 

unpublished data). Moreover, travel histories are more likely to be determined for patients 

residing outside of the endemic area for a given mosquito- or tick-borne pathogen compared 

with those residing within an endemic area where it can be reasonably assumed that 

exposure occurred near the home. Because of these limitations in travel history collection, 

assessing risk for mosquito- and tick-borne diseases in national parks using only human 

surveillance data would likely be a gross underestimate. Another consideration is that many 

national parks receive large numbers of international visitors. Even if the park visit is pin-

pointed as a likely source of pathogen exposure when an afflicted person seeks care in the 

home country, this information may not be communicated to any public health agency in the 

United States. Finally, data for exposure of park staff to vector-borne pathogens should not 

be assumed to accurately reflect the risk for visitors, even when adjusted for time spent in 

the park, because staff and visitors may have very different vector contact rates resulting 

from specific behaviors or use of certain risk areas or microhabitats.

Another possible way of assessing exposure to vector-borne pathogens in national parks is to 

conduct active surveillance, for example, by visitors providing information as they leave the 

park regarding mosquito or tick bites and giving a blood sample for testing of exposure to 

pathogens. However, should this even be logistically feasible and approved by park 

managers, it may still prove difficult to distinguish exposures in the national park versus 

exposures having occurred in another endemic area just before arrival to the park. Because 

most of the samples would represent the earliest stage of infection, there also are other 
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complicating issues including lack of detectable antibody response or circulating antigen. 

Based on these considerations, vector- or animal-based surveillance for pathogens is more 

feasible for the national parks compared with human-based surveillance, although both 

strategies would improve risk assessment estimates.

Fiscal Considerations for Surveillance of Vector-Borne Pathogens in National Parks

Surveillance of vector-borne pathogens in national parks is justified by the high visitation 

(hundreds of millions of annual visitors), our current lack of knowledge regarding the risk 

for staff and visitors of pathogen exposure within the parks, and the difficulty (unique to 

public lands) in assessing risk based on epidemiological data. Surveillance efforts would 

likely be conducted in collaboration between multiple federal agencies, including the 

National Park Service and the Centers for Disease Control and Prevention. We argue that an 

initial pilot effort, focusing on high use areas in 5–10 strategic parks with high visitor 

numbers and perceived presence of multiple vector-borne pathogens, would reveal the 

magnitude of the problem with vector-borne pathogens, particularly tick- and mosquito-

borne pathogens, in U.S. national parks. The results would guide the decision of whether 

additional funds should be allocated to expand the effort to include a wider selection of 

parks and/or to institute routine surveillance in high risk parks.

Toward Improved Messaging to Promote Personal Protection Measures 

and Reduce Vector Bites in National Parks

The NPS preservation mission dictates that personal protection measures taken by staff and 

visitors must be the core strategy to reduce exposure to vector-borne pathogens in the 

national park system. This requires effective messages to promote personal protection 

measures and inform park visitors and staff of their responsibility for personal protection 

without discouraging outdoor activities by instilling fear disproportionate to the risk. The 

first steps to reduce exposure to vector-borne pathogens in a national park are to determine 

which vectors and vector-borne pathogens are present in that park, and then to assess when 

and where within the park exposure risk for a given pathogen occurs and reaches its peak. 

This knowledge provides the basis for effective messaging to park visitors, for example, by 

informing them that risk for exposure to ticks may occur from April–September, with a peak 

in late July–August, and that risk of encountering ticks is greatest along forest edges. In 

cases where risk of encountering ticks differs with geographic area within the park, tick 

exposure information could be presented together with a basic risk map depicting the areas 

where exposure risk is projected to be elevated versus low. The messaging also should 

provide guidance regarding 1) personal protective measures to prevent vector bites (http://

www.cdc.gov/Features/StopTicks/; http://www.cdc.gov/Features/WestNileVirus/), 2) the 

importance of prompt and safe removal of attached ticks (some tick-borne pathogens, such 

as B. burgdorferi, are transmitted only after 1–3 d of attachment, which provides a window 

of opportunity to remove an infected tick before transmission occurs), and 3) which vector-

borne pathogens occur in the park, what the early symptoms of infection are, and the 

importance of seeking medical care if symptoms arise. In the case of national parks where 

plague may occur, it also is important to clarify that infection can be acquired through 

handling of sick or dead animals. Studies are needed to determine the most effective 
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messaging method(s) to make park visitors aware of the problem and what they can do to 

protect themselves, while still enjoying their visit to the park. Effective and multilingual 

messaging is important in national parks because they attract visitors from across the United 

States and other countries, many of which may not be familiar with the locally circulating 

vector-borne pathogens.

In exceptional situations, such as a major outbreak within a national park of a potentially 

severe vector-borne disease, risk reduction measures beyond personal protection may be 

considered. However, any such measures must be weighed against the NPS preservation 

mission and, should the need to suppress vectors be justified, management strategies must be 

tailored to the specific site to minimize the effect on nontarget invertebrates and vertebrates 

and ecological processes (National Park Service 2006).

We conclude that:

• The risk for exposure to vector-borne pathogens in U.S. national parks is poorly 

understood.

• This knowledge gap results from lack of a systematic surveillance program for 

vector-borne pathogens in U.S. national parks.

• Because of ecological and human behavioral differences, risk assessments (e.g., 

disease incidence or abundance of infected vectors) for neighboring areas outside 

of a national park cannot be assumed to be representative of risk within the park.

• Vector surveillance, complemented by risk modeling, may aid in identifying when 

and where within a certain park visitors and staff are at greatest risk for exposure to 

vectors and vector-borne pathogens.

• Improved knowledge of high risk areas and time periods facilitates the crafting of 

messages to inform park visitors and staff of the potential risk associated with 

vectors and vector-borne pathogens, and to inform them about their responsibility 

for personal protection measures.

• These considerations are not unique to U.S. national parks but rather apply broadly 

to public lands worldwide.
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